Characterizing intimate mixtures of materials in hyperspectral imagery with albedo-based and kernel-based approaches
نویسندگان
چکیده
Linear mixtures of materials in a scene often occur because the pixel size of a sensor is relatively large and consequently they contain patches of different materials within them. This type of mixing can be thought of as areal mixing and modeled by a linear mixture model with certain constraints on the abundances. The solution to these models has received a lot of attention. However, there are more complex situations, such as scattering that occurs in mixtures of vegetation and soil, or intimate mixing of granular materials like soils. Such multiple scattering and microscopic mixtures within pixels have varying degrees of non-linearity. In such cases, a linear model is not sufficient. Furthermore, often enough, scenes may contain cases of both linear and non-linear mixing on a pixel-by-pixel basis. This study considers two approaches for use as generalized methods for un-mixing pixels in a scene that may be linear (areal mixed) or non-linear (intimately mixed). The first method is based on earlier studies that indicate non-linear mixtures in reflectance space are approximately linear in albedo space. The method converts reflectance to single-scattering albedo (SSA) according to Hapke theory assuming bidirectional scattering at nadir look angles and uses a constrained linear model on the computed albedo values. The second method is motivated by the same idea, but uses a kernel that seeks to capture the linear behavior of albedo in nonlinear mixtures of materials. The behavior of the kernel method can be highly dependent on the value of a parameter, gamma. Furthermore, both methods are dependent on the choice of endmembers, and also on RMSE (root mean square error) as a performance metric. This study compares the two approaches and pays particular attention to these dependencies. Both laboratory and aerial collections of hyperspectral imagery are used to validate the methods.
منابع مشابه
Modeling linear and intimate mixtures of materials in hyperspectral imagery with single- scattering albedo and kernel approaches
Linear mixtures of materials in a scene often occur because the resolution of a sensor is relatively coarse, resulting in pixels containing patches of different materials within them. This phenomenon causes nonoverlapping areal mixing and can be modeled by a linear mixture model. More complex phenomena, such as the multiple scattering in mixtures of vegetation, soils, granular, and microscopic ...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کامل